
USING A HARRIS-
STEPHENS ALGORITHM TO
FIND “CORNERS” IN RAW
DATA!
WESLEY KETCHUM !
LANL !

4/17/13 1

OVERVIEW!

Basic theory and what is currently in LArSoft

Implementation on RawDigits

First results
• …on all of one event

Conclusions
• Putting it into LArSoft
•  Items/methods to be tested
•  Ideas on 3D

4/17/13 2

IMAGE PROCESSING: STRUCTURE TENSOR!

Harris-Stephens is an image-processing technique
based on locating large changes in “intensity”
• Take digitized 2D-image
• Create partial derivative images for both dimensions

•  I’ll call the directions x and y
• Construct “structure tensor” over some local

neighborhood of pixels

4/17/13 3

!

! = !
!"
!"

! !"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!
!,!

!

!

WITH THAT STRUCTURE TENSOR!

Analyze the eigenvalues of A
• The eigenvalues tell you how fast things are changing,

and in how many dimensions

• λ1 ~ λ2 ~ 0
•  No big changes – things look similar in every direction

• λ1 >> λ2 ~ 0
•  See large directions along one direction (given by the

eigenvector…), and not so much along the other
•  This would be an edge

• λ1 ~ λ2 >> 0
•  Big changes in intensity along all directions – a corner!

•  Or an endpoint, or a singularity

 4/17/13 4

HOW TO ASSIGN A SCORE TO EACH PIXEL!
Harris-Stephens
• det(A) – κ ∙ tr(A)2 = (λ1λ2) – κ (λ1+λ2)2

•  κ is just empirically determined; typically ~ 0.05
•  For noise-space, score ~ 0; for edges, score < 0, and for

corners, score > 0

Noble (?)
• det(A) / tr(A) = (λ1λ2) / (λ1+λ2)

•  For noise, score ~ 0; for edges, score is smallest eigenvalue;
and, for corners, score ~ eigenvalue magnitude

Shi-Tomasi
• min(λ1 , λ2)

•  More computationally intensive than the others…

4/17/13 5

DOES IT WORK?!

Sure it does!
• Widely-used in image�

processing

Of course, there are other �
methods too
• Second-derivative�

approaches
• Template-matching

4/17/13 6

http://glowingpython.blogspot.com/2011/10/corner-
detection-with-opencv.html

COULD WE USE IT IN LAR TPC
RECONSTRUCTION?!
Sure we can!

In fact, already exists as a vertex-finder
• My understanding of HarrisVertexFinder_module

•  Takes in hits from clusters
•  Fills 2D images with Gaussian centered around hit center
•  Uses Noble score as measure of cornerness
•  Matches every found corner to a hit
•  Sends out list of corners up to specified maximum

So, can we do better?
•  I don’t know…but, this feels unnatural to me

4/17/13 7

TREATING OUR DETECTOR LIKE A CAMERA!

• We take NPlanes 2D pictures
•  x = wire direction, y = time direction

Why not apply algorithm to raw or calibrated data?
• Benefits:

•  No discontinuities that aren’t real properties of the event
•  Use all of the data possibly available to you
•  More time-efficient

•  data à hits à clusters à hits à (less) data à corners ?
•  Let’s you start to dream about low-latency feature finding

• Drawbacks
•  None that I’ve thought of (i.e. I haven’t tried to think of any)

•  Well, matching to hits could be an issue

4/17/13 8

TRIAL RUN ON RAWDIGITS!

Got (1) CCQE event from Jonathan Asaadi
Looking at collection plane
• Collapsed time bins to match spatial range of wire

pitch
•  And zoomed in on the action

4/17/13 9
Wire Number

580 600 620 640 660 680 700 720

Ti
m

e

1100

1120

1140

1160

1180

1200

1220

1240

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Wire Number
580 600 620 640 660 680 700 720

Ti
m

e

1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

NEXT, TAKE THE DERIVATIVE!

There are a number of ways one can do this
•  I am using a “Sobel” mask, which looks at 3x3 pixel

region, to get somewhat smoothed derivative
•  This is standard, but it’s not clear if it’s the best for us

4/17/13 10

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

-1000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Partial Derivatives (x)

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

-1000

-5000

0

5000

1000

Partial Derivatives (y)

RESULTS OF ANALYZING EIGENVALUES!

4/17/13 11

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

1
10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

1410

1510

1610

1710

Figure of Merit (Harris)

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

410

510

610

710

810

Figure of Merit (Noble)

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

410

510

610

710

810

Figure of Merit (Shi-Tomasi)

REDUCE TO FIND LOCAL MAXIMA!

• Set a minimum threshold of interest, and a
neighborhood around which to select only local
maxima

• Shown here
•  Noble score
•  threshold > 5e6
•  neighborhood of 3 �

pixels
•  Total of 31 feature �

points

4/17/13 12

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

410

510

610

710

810

Corner Points

SIDE-BY-SIDE WITH RAW DATA!

4/17/13 13

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

410

510

610

710

810

Corner Points

Wire Number
580 600 620 640 660 680 700 720

Ti
m

e

1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

OK, NOW WHAT?!

Up to everyone else

Here’s what I’ve started playing with: finding primary
vertex by performing “path integrals”
•  Idea: lines between feature points should be populated

consistently by charge
• So…draw a line between all pairs of feature points

•  Keep count of how many lines have most intersected bins
(>90%) with some activity (>5 ADC counts for now)

• Vertices should have multiple lines coming out

4/17/13 14

FOR THE NOBLE SCORE HISTO…!

• Getting a lot of stuff in the shower
•  Not surprising

• What happens if we lower the threshold from creating
the max suppressed plot?

4/17/13 15

1
1

2 1

5
2

4 2
4

3 5
3 7 2

4 3

5
5

3
3 23

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

Corner Score

LOWERING THAT THRESHOLD!

• We get more feature points along each track à picking
out where the long tracks intersect rather well

•  Likely needs a lot of tuning, but this may be promising

4/17/13 16

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310

410

510

610

710

810

Corner Points

1
6

2 1

6 5
2

4 2
6 4

3 56
3 7 2

6 4 3

6
5

5

15 99 9 10 10 10 610 10 10

580 600 620 640 660 680 700 720
1100

1120

1140

1160

1180

1200

1220

1240

Corner Score

CONCLUSIONS FOR NOW!

Working on putting this into LArSoft
• Brian suggested implementing as algorithm
• Ben C., Jonathan, and I put in the bulk of the code last

night
•  Needs fixes to make it work

Needs lots of testing/tuning
• Derivatives, corner score, neighborhood sizes,

thresholds, etc.

Should be easily extendable to 3D
• Working on framework for that

4/17/13 17

